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Controlling dissipative and Hamiltonian chaos by a constant periodic pulse method
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A constant periodic pulse method is proposed to control dissipative and Hamiltonian chaos. Using the
convergence of the chaotic orbit in finite time, the stable segment of the chaotic orbit that satisfies the desired
dynamical features can be made to form a closed orbit by the action of a proper perturbation on the system
variables. A way to determine the intensity of the perturbation and the corresponding fixed points is presented.
The method is robust against the presence of external noise.
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I. INTRODUCTION results for the Heon map, the standard map, and thenbie-
Heiles model are presented in Sec. lll. In Sec. IV we briefly

A wide variety of methods have been proposed for con-study the effect of external noise. Finally, the main results of
trolling chaos in nonlinear dynamical systems since Ott, Grethis paper are discussed and summarized in Sec. V.
bogi, and Yorke(OGY) proposed to apply a small perturba-
tion to stabilize an unstable periodic orlit]. However, Il. THE CONSTANT PERIODIC PULSE METHOD
much of the work in the literature so far has concentrated on . . . .
dissipative systemg2—4], where the periodic pulse method, We consider the discrete time dynamical system
in which proportional pulses act on the system variables, is Xq 1= F(X1) 1)
one method usefb,6]. For conservative systems, there are n+i n
only a few method$7-9]. This might be because there are wherexe RN andF is a sufficiently smooth function of.
no chaotic attractors. Therefore, the initial condition acts as a Tnere is a close relationship between the controllability
special controlling parameter in describing the chaotic beand predictability in finite time for a dynamical system. The
havior. In this paper, we propose a constant periodic pulsgytter depends not only on the precision of measurement, but
method in which the periodic pulse is independent of theyiso on the stability of the system. For a chaotic orbit, there

system variables. The method is suitable for both dissipativehay be large changes in local stability, which can be ex-
and conservative systems. The procedure is as follows. Firshressed by local Lyapunov exponents.

we calculate the finite time Lyapunov exponefit§] (also We iteratex, T times to get
called the local Lyapunov exponept®r initial points dis-
tributed uniformly in the phase space, and obtain the finite Xes1=F T (Xy). 2

time convergence zones in different time lengths. Then we
select the stable segment that satisfies the desired dynamicéte convergence aftériterations from the neighborhood of
features, and determine the intensity and interval of the pemoint xs can be described by the Jacobian matrix of &),
turbation. When the system approaches the end point of the
desired orbit, we act the perturbation on the system variables
to make the system return to the neighborhood of the initial
point. By successive action of the constant periodic pertur-
bation, the stable segment of the chaotic orbit can be made fbhis is anN XN matrix. If the map or dynamical equation
form a closed periodic orbit. This method can stabilize non-describing the system is not known, the matrix may be de-
linear dynamical systems into any desired periodic orbit andermined by local linear fitting at poind;. We can define the
does not require any previous knowledge of the system. Wénite time Lyapunov exponentd(Xs,T) of T iterations
have studied the use of the constant periodic pulse method finom X, for the map(1) as
one-dimensional dissipative systefdd]. Here, we illustrate
the method with the Heon and standard maps and the
Henon-Heiles model, representing discrete dissipative, dis-
crete, and continuous conservative systems, respectively. We
also discuss the effect of Gaussian white noise and find thafere\;(xs,T) are the eigenvalues of the Jacobian majx
our method is robust against the presence of external nois&or conservative systems, the Jacobian matrix often exhibits
The outline of the rest of the paper is as follows. In Sec. llcomplex-conjugate eigenvalues at one or more of the orbit
we present the constant periodic pulse method. Numericgloints. In this case|\i(xs,T)| are always equal to 1.
Ai(Xs,T) reflect the stability of the segment of the chaotic
orbit afterT iterations in the neighborhood of poir{. If T
*Email address: haiboxu65@hotmail.com is very large, the largest finite time Lyapunov exponent

&F(Xs-%—T—l) ‘9F(XS+T—2) . aF(Xs)

DFM(xg) =
(x) MXss1-1  IXsyT-2 IXs

()

Ai(xs,T)= $|n|)\i(xs,T)| (i=1,2,...N). (4)
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Ama{Xs,T) plays a dominant role. A;(xs,T) approaches tures form a closed orbit by the action of a proper perturba-
tion on the system variables without affecting its conver-

the limiting value in the form off P asT— (p is a con- _ _
stant for a given systen{12]. The usual Lyapunov expo- gence. Thus, when the system falls in the neighborhood of

nents areA;=lim_.. Ai(Xs,T), which are independent of Xs:+7, We let a constant perturbation determined by

the initial conditions. The orbit is stable if
Po=Xs—Xs4 71 (6)

Ai(xs, T)<0 (i=1,2,...N). (5)
act on the system variables. Let tfdterations of the map

In controlling chaos, we are interested in the set of all . i
initial points xg that satisfyA;(xs,T)<0. Generally, the set starting fromx return back tox:
of x5 forms a many-part region in phase space which have .
nonzero measurement and do not link to each other. This X5 7=F T (Xs) + Po=Xos 7+ Po=Xs- (7

region is called the finite time convergence zone. We exam-
ine the orbits starting from different initial points in the re- Repeating the above process by successive periodic pulses

gion, and select a stable segment of the chaotic orbit contairpn the system variables, the mé is replaced by
ing T+1 pointSXg,Xs:1,--- Xse7 Where the firstT points

satisfy the desired dynamical behavior. Sixge X, 1, this o
orbit is not a periodic orbit. Our intention is to make a stable Xt 1=F(Xn) +Po = F(X,) + Po 2 S(n—mT), (8)
n m=myg

segment of the orbit that satisfies the desired dynamical fea-

TABLE |. The initial points, end point, and intensities of periodic pulses for four different orbits of the

Henon map
T Xs Ys Xs+T Ys+T pOX poy Px py
0.150 0.205 1.17350 0.04500 1.02350 0.160 006-1.003 0.130
—1.635 0.315

0.70519 0.02093 —1.66519 0.33907
0.37581 1.16539 —0.50081 1.145 -0.475

1

2 —0.960 0.360
4

0.96948 —0.47195 0.950 -0.460

—0.055 -0.125 —-1.22039
10 -0.092 -0.105 -—1.06148 0.36695
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FIG. 2. The four periodic or-
bits for the Hamon map controlled
by intensities pox,poy) of peri-
odic pulses(a) 1; (b) 2; (c) 4; (d)
10.

FIG. 3. The four periodic or-
bits for the H®on map controlled
by intensities p,,p,) of periodic
pulses.(a) 1; (b) 2; (c) 4; (d) 10.



HAIBO XU, GUANGRUI WANG, AND SHIGANG CHEN PHYSICAL REVIEW E64 016201

(a) (b}

FIG. 4. The finite time conver-
gence zones of different iterations
for the standard maga) 1; (b) 2;
(c) 4; (d) 10.

wheremy is the initial time of the perturbation. Obviously, = Then we can obtain a stable periodic orbit by the action of
is a fixed point of the map. Because the map does not changriccessive periodic pulses. Of course, the process of looking
the stability of the original magl), the firstT points form a  for the fixed points has changed the conservative property of

stable periodF orbit. the system temporarily, but the final stable system is still
However, two cases often occur in practice for which theconservative.
stable periodic orbit may deviate from the one selectgd. The method can be generalized to continuous time dy-

For a system in the neighborhood »f, 1, if we use the namical systems. We may write the equations describing the
perturbationp, determined by Eq(6), the system can only system in the iterative form by employing a fourth-order
return to the neighborhood of, and not toxs exactly. (i) Runge-Kutta method,

For a system off iterations fromx, (i.e., a system ixg, 1),

if we use a perturbatiop a little smaller or larger thap,, OXnt+1=InXp - (10

the system can also return to the neighborhoodgdut in )

not to x,. For dissipative systems, an orbit near the stabldi€re the step length has been carefully chosen in order to
orbit tends to approach the stable orbit gradually. When th@V0id spurious behavior. The behavior of the system will be
system enters into the neighborhood of the end point wéiMPlified by constructing the proper Poincagection. The
perturbate the system variables to make it return to th@eriod is defined as the interval between two successive
neighborhood of the initial point. Thus the system can befrossings of the section by the orbit from the same side. If a
stabilized into the desired periodic orbit after only a few PeriodN orbit is to be controlled, the perturbation will be
iterations. For conservative systems, because the volume @fted on the system variables eveiytimes that the orbit
phase space is constant and thus there are no attractors, the o ) _ ) N

stable periodic orbit cannot be obtained in these two cases. TABLE Il. The initial points, end points, and intensities of pe-
What we obtain is a quasiperiodic orbit surrounding the fixed0dic pulses for four different orbits of the standard map.

points of the stable period-orbit. If we want to stabilize the
system into the periodic orbit, we need to search for the
periodic fixed points corresponding po We rewrite Eq(7)

in the form

05 Is 95+T Ms+1 Pe Pr

0.100 0.700 0.69710 0.59710-0.550 0.080
0.650 0.150 0.29604 0.35441 0.320-0.180
0.600 0.070 0.42912 0.08298 0.160 0.000
10 0.415 0.300 0.61746 0.28689—0.190 -0.010

NG R

Xee1= (Xsr 7+ P+Xg)/2=Xs. 9
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0.3 - FIG. 5. The quasiperiodic or-
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02 troII.ed. by intensities |()0,p.r) of
= “02« ‘:\ ”/ periodic pulses surrounding the
- o fixed points of (a) the period-2
0.1 o1 and (b) the period-4 orbit.
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crosses the Poincasection from the same side. By repeat- select points that satisfx;<0, i.e., the finite time conver-
ing the above process, a stable peribarbit can be ob- gence zone. Figure 1 shows the finite time convergence
tained. zones of different iterations for the 'Hen map. Except for
one iteration, the areas of the convergence zones decrease as
lll. SPECIFIC APPLICATIONS the iteration times increase.

Table | shows the initial pointsx(,ys), end points
(Xs+7,Ys+T) @nd intensities Fﬁo po) and (py,py) of peri-

As an example of a dissipative system, we consider th@jic puises for four different orbits. For caé in Sec. I,
Henon map(13] when the system enters the neighborhoodaf ¢,Ys: 1),
we cause a perturbatiorp&x,poy) to act on the system vari-
ables to make it return to the neighborhood %{ /). Fig-
wherea=1.4 andb=0.3. The system has a chaotic attractor.Ure 2 shows the stabilized orbits controlled by the intensities

Let an arbitrary point of phase spatey) be the initial  (Po,;Po,) Of periodic pulses. For the cagé) in Sec. Il, when
point. We calculate the finite time Lyapunov exponent for athe system is iterated times starting from the initial point,
segment of the chaotic orbit at a given iteration time, andve cause a perturbatiorpy,p,) to act on the system vari-

A. The Hénon map

(Xns1,Yn+1) = (1—axi+y,,bx,), (12)

(a) (b}
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(a) (b)

FIG. 7. The phase portraits
corresponding to the standard map
(a) with k=1.1, and(b) controlled
by the intensity(—0.550,0.08D of
the periodic pulse whef=1.

ables to make it return to the neighborhood ®f,{/;). Fig- standard map, we can obtain a very clear picture of the
ure 3 shows the stabilized orbits controlled by the intensitiesnechanisms involved in the transition to global chaos in con-
(px,py) of periodic pulses. servative systems.

Generally, the map exhibits three types of orbit: periodic,
quasiperiodic, and chaotic. F&=0, the map is integral.

B. The standard ma|
P With increasingk, the map undergoes a transition from local

The form of the standard map [i$4] to global chaos. Above the value kfk, (k,=0.971 6354
K is called the critical value the last remaining Kolmogorov-
(Fns1,Ons1)=|Tn— ESin(ZTFGn),@nJFFnH (mod 1) Arnol'd-Moser torus, which stretches horizontally from

=0 to 1.0, is broken. For values &k, it is not possible

for any trajectory to diffuse vertically through this line and
reach arbitrarily large values of For values ofk>k., the
wherer and 6 are the action and angle coordinates. From thesystem demonstrates global chaos. In this subsection, we
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TABLE Ill. The initial points, end points, and intensities of siperiodic orbit surrounding the fixed points of the stable
periodic pulses on the Poincasection for four different orbits in  period-T orbit. Figure 5 shows the quasiperiodic orbits sur-

the Henon-Heiles model. rounding the fixed points of the period-2 and period-4 orbits.
If we want to stabilize the system into the periodic orbit, we
T Gz, P2, 2, ¢ P2, ; Pq, Pp, need to search for the periodic fixed points corresponding to

1 0015 —0.230 001221 -026155 0010 0020 P- Fi.g.ure 6 shows the sta_bili;ed orbits_controlled by the in-
5 0135 -0.020 010852 002067 0.010-0.020 tengltles 04.p;) of the perlodlq pulses. in Table Il. The nu-
4 0580 —0020 059013 001256 0.010-0.020 merical results shqw tha_t orbits starting fror_n convergence
10 —0.185 —0.450 —0.15652 —0.47311 —0.010 0010 Zonescan be stabilized into the desired periodic orbits rap-
idly after controlling.

Figure 1a) shows some orbits for the standard map with
k=1.1, and Fig. ) shows some orbits for the standard map

consider the case &=1.1. As for the Haon map, we ob-

tain the finite time convergence zones of different iteration<controlied by the intensity—0.550,0.080 of the periodic
as shown in Fig. 4. pulse whenT=1 [i.e., the global portrait of Fig. @)]. The

The situation of an extremely long chaotic transient wherdfW© Phase portraits are completely different. In Figh)7the
controlling conservative chaos is fundamentally different€Sonance zone surrounding the fixed point of the period-1
from the situation of controlling dissipative chaotic attractorsOrPit is clearly seen while the same region is chaotic in Fig.
[7]. The system needs an extremely long time to reach thé(®. and the phase portrait contains a single chaotic orbit
neighborhood of the end point, so we study only the secon§xcept for the resonance zone surrounding the fixed point of
case(ii) in Sec. II. Table Il shows the initial pointsg{,ry), € period-1 orbit. _ , o
end points 0., 1, 1), and intensities,,p,) of periodic _ The standard map descrlb_es the motion of a periodically
pulses for four different orbits. In the process of control, kicked rotor. The corresponding Hamiltonian(is4]
when the system has iterat&dimes starting from the initial ! ‘

oint, we cause a perturbatiop, to act on the system o+,
\F:ariables to make ?[ return toﬂéep%)eighborhood eg?(/rs). H(r0,0=3r"+ (2)? COSZW&)m;w a(t=m).
For conservative systems, because the volume of phase space (13
is constant and thus there are no attractors, we cannot obtain
the selected stable periodic orbits. What we obtain is a quaFhe Hamiltonian is a function df, in other words, the sys-

0

@ (b)

FIG. 9. The four periodic or-
bits for the Heon-Heiles model
controlled by intensities
(¢) (d) (Pg2.Pp2) Of periodic pulses(a)
1; (b) 2; (c) 4; (d) 10.
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FIG. 10. The effect of additive noise for the N map withp=1.0x 103,

tem energy varies with. The perturbations may keep the The energy is conserved and this restricts the trajectories to
energy balance in a period of the periodically kicked force.lie on a three-dimensional surface in the four-dimensional
So the orbits of the rotor in phase space can be controlled tphase space. We take the sectign,p,) at q;=0 with p,

periodic orbits.

C. The Henon-Heiles model

>0 to be a Poincarseection. For a givends,p,), p; is

p1=(2E—p3—a5+3%a3)*2 (16)

The Hewon-Heiles model is a two-dimensional near- |, this section, we set the energy toBe0.166 67. Periodic

integrable Hamiltonian system, and its Hamiltoniaf1i§]
H=3(pi+p)+3(ai+ay)+aig,— 303 (14
The canonical equations are

o _
dt plv

dgp _
at Pz
(15

dps
T d1— 4249102,

dp,
dat fquqf*qé.

(a)

04

0.3

024

0.1

0.0 v T v T T T T
0 200 400 600 800 1000
iteration number

and quasiperiodic orbits hardly exist, and a single trajectory
almost fills the whole isoenergetic surface.

According to the above control method, we rewrite Eq.
(15) in iterative form by employing a fourth-order Runge-
Kutta method where the step lengthhis-0.1:

oy ., Jir J1p Jiz Jug| [ 601,

o0z, | Jar J22 Jaz Jos 60z, 17

§p1n+l \]31 J32 J33 J34 5pln '

P2, ., Jar Jaz Jaz Jaal | OP2,
where J;;) is a Jacobian matrix. We obtailto an accuracy
of h*:

2 3 h4 h4 h4 h4
Jii=1- ?_hZQZ_ 3 Pt ot 7t Zcﬁ“‘ Tqu’

(b)

0.4

0.3
PPN

- & B0t Snl a0 et A Port O
0.2 .;-,'.U"W
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FIG. 11. The effect of additive noise for the standard map with5.0x 104,
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(b)

FIG. 12. The effect of additive
noise for the Haon-Heiles model
with p=(a)5.0<10°° and (b)

2.0x1075.
) . 2h 5h4 h*
Ja1=—2hq;—h®py+hg, + TQ1Q2+ L
h4
+ > d2P1

h3 h® 5h*

Jiz=—h+2hag,+h?py+ e h®q,+ §(ﬁ+ h%q3— 1o P2

5h* h?*
+ ?Q2p2+ > d1P1,

,  2hn 5h* h*
Jaz=—h*g,— ?pl"‘ §Q1+ > d102;

Lo M 2 ht st ont

4= 1= 5 ANt =Pt 57— 7502~ 541
5h*
+Eq2.

To control a periodN orbit, we can multiply all the Jaco-
bian matrices from the initial point to théth piercing point
of the section along the trajectory according to Eg). If
each eigenvalue of the Jacobian matrix has a real part that is
less than or equal to 1, the orbit is stable. Then we can
determine the finite time convergence zone on the Poincare
section. Figure 8 shows the finite time convergence zones of
different periods. As in the standard map, the areas of the
convergence zones decrease as the periods increase.

Table Il shows the initial pointsd,,p,), end points
(q25+T'p25+T) and intensities pﬁqz,ppz) of periodic pulses on
the Poincaresection for four different orbits. In the process
of control, when the system falls on the Poincaeetion, we
cause a perturbatiorpgz,ppz) to act on the system variables

to make it return to the neighborhood cng, pzs). Figure 9
shows the stable orbits controlled by intensitipgz(ppz) of

the periodic pulses in Table Il after discarding the transient
process of looking for the periodic fixed points.

For the Hmon-Heiles model, the energy is conserved. In
Table 11, we give only the perturbatiorpr,12 and Pp, atdy

016201-9
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=0. In fact, the perturbatiompl also exists. Bupy, is de-  that the effect of noise is related to the position of the initial

constant. In other words, the perturbations are preciselﬂmie convergence zone, the system is much more sensitive to
tuned so that the system energy input/output is zero. oise.

IV. EFFECT OF NOISE V. CONCLUSION

An important issue in a method that attempts to stabilize In this paper, we propose a constant periodic pulse
chaotic systems is its robustness against the presence of exethod and successfully illustrate the method with three ex-
ternal noise. In this section, we consider Gaussian whit@mples for discrete dissipative, discrete, and continuous con-
noise generated by using the Box-Muller metHdé], and  servative systems. The key of the method is to search for the
introduce additive noise in the form finite time convergence zones in different time lengths, i.e.,
all the stable segments of the chaotic orbits in different time
lengths. Generally, the finite time convergence zones de-

. . . .. crease as the periods increase. The constant periodic pulse
wherep denotes the intensity of external noise. The noise I$hethod is robust against external noise.

applied at each Runge-Kutta integration step,
_ PN\ — SOt method is aimed at desired dynamical targets with a good

(6()=0, (£(O&(t)=5(t-t"). 19 diversity. Using the method, we can target not only preexist-
Figure 10 shows the effect of noise for the period-2 andng periodic orbits in the given system, but also new orbits
period-4 orbits corresponding to Fig. 2. The intensity ofnot naturally visited in the unperturbed dynamics. It is more
noise acting on the system variables and y is p  important that the Jacobian determinant is invariant under
=1.0x 10 3. Figure 11 shows the effect of noise for the the action of the perturbation on the system variables, i.e.,
period-2 and period-4 orbits corresponding to Fig. 6. Thethat this does not change the conservative property of the
intensity of noise acting on the system variableand ¢ is ~ System. Therefore, the method is suitable for both dissipative
p=5.0x10"*. Figure 12 shows the effect of noise for the and conservative systems. The behavior of the controlled
period-2 and period-4 orbits corresponding to Fig. 9. Thesystem is dependent not only on the control paraméters
intensity of noise acting on the system varialgsandp, is terval and intensity of pulgebut also on the position of the
p=5.0x10"° for the period-2 orbit and 2010 ° for the initial point. Further studies are currently in progress.
period-4 orbit. Comparing Fig. 10 with Fig. 2, Fig. 11 with
Fig. 6, and Fig. 12 with Fig. 9, we can see that the noisy
orbits remain within a small neighborhood of the noise-free
orbits and do not wander over the whole phase space. So H.X. thanks Y.X. Cheng for useful discussions. This work
they are still periodic. This shows that the constant periodiovas supported by the Special Funds for Major State Basic
pulse method is robust against external noise. The numeric&esearch Projects, the National Natural Science Foundation
results also show that the effect of noise is greater for highef China, and the Science Foundation of China Academy of

X =xi+p&t) (i=1,2,...N), (19

Compared with other periodic pulse methods, our control
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periodic than for low-periodic orbits. Further study showsEngineering Physics.
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