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Controlling dissipative and Hamiltonian chaos by a constant periodic pulse method
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A constant periodic pulse method is proposed to control dissipative and Hamiltonian chaos. Using the
convergence of the chaotic orbit in finite time, the stable segment of the chaotic orbit that satisfies the desired
dynamical features can be made to form a closed orbit by the action of a proper perturbation on the system
variables. A way to determine the intensity of the perturbation and the corresponding fixed points is presented.
The method is robust against the presence of external noise.
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I. INTRODUCTION

A wide variety of methods have been proposed for c
trolling chaos in nonlinear dynamical systems since Ott, G
bogi, and Yorke~OGY! proposed to apply a small perturb
tion to stabilize an unstable periodic orbit@1#. However,
much of the work in the literature so far has concentrated
dissipative systems@2–4#, where the periodic pulse metho
in which proportional pulses act on the system variables
one method used@5,6#. For conservative systems, there a
only a few methods@7–9#. This might be because there a
no chaotic attractors. Therefore, the initial condition acts a
special controlling parameter in describing the chaotic
havior. In this paper, we propose a constant periodic pu
method in which the periodic pulse is independent of
system variables. The method is suitable for both dissipa
and conservative systems. The procedure is as follows. F
we calculate the finite time Lyapunov exponents@10# ~also
called the local Lyapunov exponents! for initial points dis-
tributed uniformly in the phase space, and obtain the fin
time convergence zones in different time lengths. Then
select the stable segment that satisfies the desired dyna
features, and determine the intensity and interval of the p
turbation. When the system approaches the end point of
desired orbit, we act the perturbation on the system varia
to make the system return to the neighborhood of the in
point. By successive action of the constant periodic per
bation, the stable segment of the chaotic orbit can be mad
form a closed periodic orbit. This method can stabilize no
linear dynamical systems into any desired periodic orbit a
does not require any previous knowledge of the system.
have studied the use of the constant periodic pulse metho
one-dimensional dissipative systems@11#. Here, we illustrate
the method with the He´non and standard maps and t
Hénon-Heiles model, representing discrete dissipative,
crete, and continuous conservative systems, respectively
also discuss the effect of Gaussian white noise and find
our method is robust against the presence of external no

The outline of the rest of the paper is as follows. In Sec
we present the constant periodic pulse method. Numer
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results for the He´non map, the standard map, and the He´non-
Heiles model are presented in Sec. III. In Sec. IV we brie
study the effect of external noise. Finally, the main results
this paper are discussed and summarized in Sec. V.

II. THE CONSTANT PERIODIC PULSE METHOD

We consider the discrete time dynamical system

xn115F~xn!, ~1!

wherexPRN andF is a sufficiently smooth function ofx.
There is a close relationship between the controllabi

and predictability in finite time for a dynamical system. Th
latter depends not only on the precision of measurement,
also on the stability of the system. For a chaotic orbit, th
may be large changes in local stability, which can be
pressed by local Lyapunov exponents.

We iteratexs T times to get

xs1T5F~T!~xs!. ~2!

The convergence afterT iterations from the neighborhood o
point xs can be described by the Jacobian matrix of Eq.~2!,

DF~T!~xs!5
]F~xs1T21!

]xs1T21

]F~xs1T22!

]xs1T22
¯

]F~xs!

]xs
. ~3!

This is anN3N matrix. If the map or dynamical equatio
describing the system is not known, the matrix may be
termined by local linear fitting at pointxs . We can define the
finite time Lyapunov exponentsL i(xs ,T) of T iterations
from xs for the map~1! as

L i~xs ,T!5
1

T
lnul i~xs ,T!u ~ i 51,2, . . . ,N!. ~4!

Herel i(xs ,T) are the eigenvalues of the Jacobian matrix~3!.
For conservative systems, the Jacobian matrix often exh
complex-conjugate eigenvalues at one or more of the o
points. In this case,ul i(xs ,T)u are always equal to 1
L i(xs ,T) reflect the stability of the segment of the chao
orbit afterT iterations in the neighborhood of pointxs . If T
is very large, the largest finite time Lyapunov expone
©2001 The American Physical Society01-1



s

HAIBO XU, GUANGRUI WANG, AND SHIGANG CHEN PHYSICAL REVIEW E64 016201
FIG. 1. The finite time conver-
gence zones of different iteration
for the Hénon map.~a! 1; ~b! 2;
~c! 4; ~d! 10.
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Lmax(xs ,T) plays a dominant role. L i(xs ,T) approaches
the limiting value in the form ofT2p asT→` ~p is a con-
stant for a given system! @12#. The usual Lyapunov expo
nents areL i5 limT→` L i(xs ,T), which are independent o
the initial conditions. The orbit is stable if

L i~xs ,T!<0 ~ i 51,2, . . . ,N!. ~5!

In controlling chaos, we are interested in the set of
initial points xs that satisfyL i(xs ,T)<0. Generally, the se
of xs forms a many-part region in phase space which h
nonzero measurement and do not link to each other. T
region is called the finite time convergence zone. We exa
ine the orbits starting from different initial points in the r
gion, and select a stable segment of the chaotic orbit cont
ing T11 points xs ,xs11 ,...,xs1T where the firstT points
satisfy the desired dynamical behavior. SincexsÞxs1T , this
orbit is not a periodic orbit. Our intention is to make a stab
segment of the orbit that satisfies the desired dynamical
01620
ll

e
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-
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tures form a closed orbit by the action of a proper pertur
tion on the system variables without affecting its conv
gence. Thus, when the system falls in the neighborhood
xs1T , we let a constant perturbation determined by

p05xs2xs1T ~6!

act on the system variables. Let theT iterations of the map
starting fromxs return back toxs :

xs1T* 5F~T!~xs!1p05xs1T1p05xs . ~7!

Repeating the above process by successive periodic pu
on the system variables, the map~1! is replaced by

xn115F~xn!1p0n
5F~xn!1p0 (

m5m0

`

d~n2mT!, ~8!
the
TABLE I. The initial points, end point, and intensities of periodic pulses for four different orbits of
Hénon map

T xs ys xs1T ys1T p0x
p0y

px py

1 0.150 0.205 1.173 50 0.045 00 1.023 50 0.160 0021.003 0.130
2 20.960 0.360 0.705 19 0.020 93 21.665 19 0.339 07 21.635 0.315
4 20.055 20.125 21.220 39 0.375 81 1.165 39 20.500 81 1.145 20.475

10 20.092 20.105 21.061 48 0.366 95 0.969 48 20.471 95 0.950 20.460
1-2
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FIG. 2. The four periodic or-
bits for the Hénon map controlled
by intensities (p0x

,p0y
) of peri-

odic pulses.~a! 1; ~b! 2; ~c! 4; ~d!
10.

FIG. 3. The four periodic or-
bits for the Hénon map controlled
by intensities (px ,py) of periodic
pulses.~a! 1; ~b! 2; ~c! 4; ~d! 10.
016201-3
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FIG. 4. The finite time conver-
gence zones of different iteration
for the standard map.~a! 1; ~b! 2;
~c! 4; ~d! 10.
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wherem0 is the initial time of the perturbation. Obviously,xs
is a fixed point of the map. Because the map does not cha
the stability of the original map~1!, the firstT points form a
stable period-T orbit.

However, two cases often occur in practice for which t
stable periodic orbit may deviate from the one selected.~i!
For a system in the neighborhood ofxs1T , if we use the
perturbationp0 determined by Eq.~6!, the system can only
return to the neighborhood ofxs and not toxs exactly. ~ii !
For a system ofT iterations fromxs ~i.e., a system inxs1T!,
if we use a perturbationp a little smaller or larger thanp0 ,
the system can also return to the neighborhood ofxs but in
not to xs . For dissipative systems, an orbit near the sta
orbit tends to approach the stable orbit gradually. When
system enters into the neighborhood of the end point
perturbate the system variables to make it return to
neighborhood of the initial point. Thus the system can
stabilized into the desired periodic orbit after only a fe
iterations. For conservative systems, because the volum
phase space is constant and thus there are no attractor
stable periodic orbit cannot be obtained in these two ca
What we obtain is a quasiperiodic orbit surrounding the fix
points of the stable period-T orbit. If we want to stabilize the
system into the periodic orbit, we need to search for
periodic fixed points corresponding top. We rewrite Eq.~7!
in the form

xs1T* 5~xs1T1p1xs!/2'xs . ~9!
01620
ge

e

e
e
e
e
e

of
the
s.

d

e

Then we can obtain a stable periodic orbit by the action
successive periodic pulses. Of course, the process of loo
for the fixed points has changed the conservative propert
the system temporarily, but the final stable system is s
conservative.

The method can be generalized to continuous time
namical systems. We may write the equations describing
system in the iterative form by employing a fourth-ord
Runge-Kutta method,

dxn115Jndxn . ~10!

Here the step length has been carefully chosen in orde
avoid spurious behavior. The behavior of the system will
simplified by constructing the proper Poincare´ section. The
period is defined as the interval between two succes
crossings of the section by the orbit from the same side.
period-N orbit is to be controlled, the perturbation will b
acted on the system variables everyN times that the orbit

TABLE II. The initial points, end points, and intensities of pe
riodic pulses for four different orbits of the standard map.

T us r s us1T r s1T pu pr

1 0.100 0.700 0.697 10 0.597 1020.550 0.080
2 0.650 0.150 0.296 04 0.354 41 0.32020.180
4 0.600 0.070 0.429 12 0.082 98 0.160 0.00
10 0.415 0.300 0.617 46 0.286 8920.190 20.010
1-4
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FIG. 5. The quasiperiodic or-
bits for the standard map con
trolled by intensities (pu ,pr) of
periodic pulses surrounding th
fixed points of ~a! the period-2
and ~b! the period-4 orbit.
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crosses the Poincare´ section from the same side. By repea
ing the above process, a stable period-N orbit can be ob-
tained.

III. SPECIFIC APPLICATIONS

A. The Hénon map

As an example of a dissipative system, we consider
Hénon map@13#

~xn11 ,yn11!5~12axn
21yn ,bxn!, ~11!

wherea51.4 andb50.3. The system has a chaotic attract
Let an arbitrary point of phase space~x,y! be the initial

point. We calculate the finite time Lyapunov exponent fo
segment of the chaotic orbit at a given iteration time, a
01620
e

.

d

select points that satisfyL i<0, i.e., the finite time conver-
gence zone. Figure 1 shows the finite time converge
zones of different iterations for the He´non map. Except for
one iteration, the areas of the convergence zones decrea
the iteration times increase.

Table I shows the initial points (xs ,ys), end points
(xs1T ,ys1T) and intensities (p0x

,p0y
) and (px ,py) of peri-

odic pulses for four different orbits. For case~i! in Sec. II,
when the system enters the neighborhood of (xs1T ,ys1T),
we cause a perturbation (p0x

,p0y
) to act on the system vari

ables to make it return to the neighborhood of (xs ,ys). Fig-
ure 2 shows the stabilized orbits controlled by the intensi
(p0x

,p0y
) of periodic pulses. For the case~ii ! in Sec. II, when

the system is iteratedT times starting from the initial point,
we cause a perturbation (px ,py) to act on the system vari
-

FIG. 6. The four periodic or-

bits for the standard map con
trolled by intensities (pu ,pr) of
periodic pulses.~a! 1; ~b! 2; ~c! 4;
~d! 10.
1-5
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FIG. 7. The phase portraits
corresponding to the standard ma
~a! with k51.1, and~b! controlled
by the intensity~20.550,0.080! of
the periodic pulse whenT51.
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we
ables to make it return to the neighborhood of (xs ,ys). Fig-
ure 3 shows the stabilized orbits controlled by the intensi
(px ,py) of periodic pulses.

B. The standard map

The form of the standard map is@14#

~r n11 ,un11!5S r n2
k

2p
sin~2pun!,un1r n11D ~mod 1!

~12!

wherer andu are the action and angle coordinates. From
01620
s

e

standard map, we can obtain a very clear picture of
mechanisms involved in the transition to global chaos in c
servative systems.

Generally, the map exhibits three types of orbit: period
quasiperiodic, and chaotic. Fork50, the map is integral.
With increasingk, the map undergoes a transition from loc
to global chaos. Above the value ofk5kc ~kc50.971 635 4
is called the critical value!, the last remaining Kolmogorov
Arnol’d-Moser torus, which stretches horizontally fromx
50 to 1.0, is broken. For values ofk<kc , it is not possible
for any trajectory to diffuse vertically through this line an
reach arbitrarily large values ofr. For values ofk.kc , the
system demonstrates global chaos. In this subsection,
s

FIG. 8. The finite time conver-

gence zones of different period
for the Hénon-Heiles model.~a! 1;
~b! 2; ~c! 4; ~d! 10.
1-6
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CONTROLLING DISSIPATIVE AND HAMILTONIAN . . . PHYSICAL REVIEW E 64 016201
consider the case ofk51.1. As for the He´non map, we ob-
tain the finite time convergence zones of different iteratio
as shown in Fig. 4.

The situation of an extremely long chaotic transient wh
controlling conservative chaos is fundamentally differe
from the situation of controlling dissipative chaotic attracto
@7#. The system needs an extremely long time to reach
neighborhood of the end point, so we study only the sec
case~ii ! in Sec. II. Table II shows the initial points (us ,r s),
end points (us1T ,r s1T), and intensities (pu ,pr) of periodic
pulses for four different orbits. In the process of contr
when the system has iteratedT times starting from the initial
point, we cause a perturbation (pu ,pr) to act on the system
variables to make it return to the neighborhood of (us ,r s).
For conservative systems, because the volume of phase s
is constant and thus there are no attractors, we cannot o
the selected stable periodic orbits. What we obtain is a q

TABLE III. The initial points, end points, and intensities o
periodic pulses on the Poincare´ section for four different orbits in
the Hénon-Heiles model.

T q2s
p2s

q2s1T
p2s1T

pq2
pp2

1 0.015 20.230 0.012 21 20.261 55 0.010 0.020
2 0.135 20.020 0.108 52 0.020 67 0.01020.020
4 0.580 20.020 0.590 13 0.012 56 0.01020.020
10 20.185 20.450 20.156 52 20.473 11 20.010 0.010
01620
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siperiodic orbit surrounding the fixed points of the stab
period-T orbit. Figure 5 shows the quasiperiodic orbits su
rounding the fixed points of the period-2 and period-4 orb
If we want to stabilize the system into the periodic orbit, w
need to search for the periodic fixed points corresponding
p. Figure 6 shows the stabilized orbits controlled by the
tensities (pu ,pr) of the periodic pulses in Table II. The nu
merical results show that orbits starting from convergen
zones can be stabilized into the desired periodic orbits r
idly after controlling.

Figure 7~a! shows some orbits for the standard map w
k51.1, and Fig. 7~b! shows some orbits for the standard m
controlled by the intensity~20.550,0.080! of the periodic
pulse whenT51 @i.e., the global portrait of Fig. 6~a!#. The
two phase portraits are completely different. In Fig. 7~b!, the
resonance zone surrounding the fixed point of the perio
orbit is clearly seen while the same region is chaotic in F
7~a!, and the phase portrait contains a single chaotic o
except for the resonance zone surrounding the fixed poin
the period-1 orbit.

The standard map describes the motion of a periodic
kicked rotor. The corresponding Hamiltonian is@14#

H~r ,u,t !5
1

2
r 21

k

~2p!2 cos~2pu! (
m52`

`

d~ t2m!.

~13!

The Hamiltonian is a function oft; in other words, the sys-
FIG. 9. The four periodic or-
bits for the Hénon-Heiles model
controlled by intensities
(pq2 ,pp2) of periodic pulses.~a!
1; ~b! 2; ~c! 4; ~d! 10.
1-7
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FIG. 10. The effect of additive noise for the He´non map withr51.031023.
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tem energy varies witht. The perturbations may keep th
energy balance in a period of the periodically kicked for
So the orbits of the rotor in phase space can be controlle
periodic orbits.

C. The Hénon-Heiles model

The Hénon-Heiles model is a two-dimensional nea
integrable Hamiltonian system, and its Hamiltonian is@15#

H5 1
2 ~p1

21p2
2!1 1

2 ~q1
21q2

2!1q1
2q22 1

3 q2
3. ~14!

The canonical equations are

dq1

dt
5p1 ,

dq2

dt
5p2 ,

~15!
dp1

dt
52q122q1q2 ,

dp2

dt
52q22q1

22q2
2.
01620
.
to

The energy is conserved and this restricts the trajectorie
lie on a three-dimensional surface in the four-dimensio
phase space. We take the section (q2 ,p2) at q150 with p1
.0 to be a Poincare´ section. For a given (q2 ,p2), p1 is

p15~2E2p2
22q2

21 2
3 q2

3!1/2. ~16!

In this section, we set the energy to beE50.166 67. Periodic
and quasiperiodic orbits hardly exist, and a single traject
almost fills the whole isoenergetic surface.

According to the above control method, we rewrite E
~15! in iterative form by employing a fourth-order Runge
Kutta method where the step length ish50.1:

S dq1n11

dq2n11

dp1n11

dp2n11

D 5S J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

D S dq1n

dq2n

dp1n

dp2n

D , ~17!

where (Ji j ) is a Jacobian matrix. We obtainJ to an accuracy
of h4:

J11512
h2

2
2h2q22

h3

3
p21

h4

24
1

h4

4
q21

h4

4
q1

21
h4

12
q2

2,
FIG. 11. The effect of additive noise for the standard map withr55.031024.
1-8
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FIG. 12. The effect of additive
noise for the He´non-Heiles model
with r5(a)5.031025 and ~b!
2.031025.
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J1252h2q12
h

3
p11

h

4
q11

h

6
q1q2 ,

J135h2
h3

6
2

h3

3
q22

h4

6
p2 ,

J1452
h3

3
q12

h4

6
p1 ,

J2152h2q12
h3

3
p11

h4

4
q11

h4

6
q1q2 ,

J22512
h2

2
1h2q21

h3

3
p21

h4

24
2

h4

4
q21

h4

12
q1

21
h4

4
q2

2,

J2352
h3

3
q12

h4

6
p1 ,

J245h2
h3

6
1

h3

3
q21

h4

6
p2 ,

J3152h22hq22h2p21
h3

6
1h3q21h3q1

21
h3

3
q2

21
5h4

12
p2

1
5h4

6
q1p11

h4

2
q2p2 ,

J32522hq12h2p11h3q11
2h3

3
q1q21

5h4

12
p12

h4

6
q2p1

1
h4

2
q1p2 ,

J33512
h2

2
2h2q22

2h3

3
p21

h4

24
1

5h4

12
q21

5h4

12
q1

2

2
h4

12
q2

2,

J3452h2q12
2h3

3
p11

5h4

12
q11

h4

2
q1q2 ,
01620
J41522hq12h2p11h3q11
2h

3
q1q21

5h

12
p12

h

6
q1p2

1
h4

2
q2p1 ,

J4252h12hq21h2p21
h3

6
2h3q21

h3

3
q1

21h3q2
22

5h4

12
p2

1
5h4

6
q2p21

h4

2
q1p1 ,

J4352h2q12
2h3

3
p11

5h4

12
q11

h4

2
q1q2 ,

J44512
h2

2
1h2q21

2h3

3
p21

h4

24
2

5h4

12
q22

h4

12
q1

2

1
5h4

12
q2

2.

To control a period-N orbit, we can multiply all the Jaco
bian matrices from the initial point to theNth piercing point
of the section along the trajectory according to Eq.~3!. If
each eigenvalue of the Jacobian matrix has a real part th
less than or equal to 1, the orbit is stable. Then we
determine the finite time convergence zone on the Poinc´
section. Figure 8 shows the finite time convergence zone
different periods. As in the standard map, the areas of
convergence zones decrease as the periods increase.

Table III shows the initial points (q2 ,p2), end points
(q2s1T

,p2s1T
) and intensities (pq2

,pp2
) of periodic pulses on

the Poincare´ section for four different orbits. In the proces
of control, when the system falls on the Poincare´ section, we
cause a perturbation (pq2

,pp2
) to act on the system variable

to make it return to the neighborhood of (q2s
,p2s

). Figure 9

shows the stable orbits controlled by intensities (pq2
,pp2

) of
the periodic pulses in Table III after discarding the transi
process of looking for the periodic fixed points.

For the Hénon-Heiles model, the energy is conserved.
Table III, we give only the perturbationspq2

and pp2
at q1
1-9
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50. In fact, the perturbationpp1
also exists. Butpp1

is de-

termined bypq2
and pp2

in order that the energy remain
constant. In other words, the perturbations are precis
tuned so that the system energy input/output is zero.

IV. EFFECT OF NOISE

An important issue in a method that attempts to stabi
chaotic systems is its robustness against the presence o
ternal noise. In this section, we consider Gaussian w
noise generated by using the Box-Muller method@16#, and
introduce additive noise in the form

xi85xi1rj~ t ! ~ i 51,2, . . . ,N!, ~18!

wherer denotes the intensity of external noise. The noise
applied at each Runge-Kutta integration step,

^j~ t !&50, ^j~ t !j~ t8!&5d~ t2t8!. ~19!

Figure 10 shows the effect of noise for the period-2 a
period-4 orbits corresponding to Fig. 2. The intensity
noise acting on the system variablesx and y is r
51.031023. Figure 11 shows the effect of noise for th
period-2 and period-4 orbits corresponding to Fig. 6. T
intensity of noise acting on the system variablesr and u is
r55.031024. Figure 12 shows the effect of noise for th
period-2 and period-4 orbits corresponding to Fig. 9. T
intensity of noise acting on the system variablesq2 andp2 is
r55.031025 for the period-2 orbit and 2.031025 for the
period-4 orbit. Comparing Fig. 10 with Fig. 2, Fig. 11 wit
Fig. 6, and Fig. 12 with Fig. 9, we can see that the no
orbits remain within a small neighborhood of the noise-fr
orbits and do not wander over the whole phase space
they are still periodic. This shows that the constant perio
pulse method is robust against external noise. The nume
results also show that the effect of noise is greater for hi
periodic than for low-periodic orbits. Further study show
01620
ly
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that the effect of noise is related to the position of the init
point. If the initial point is located at the edge of the fini
time convergence zone, the system is much more sensitiv
noise.

V. CONCLUSION

In this paper, we propose a constant periodic pu
method and successfully illustrate the method with three
amples for discrete dissipative, discrete, and continuous c
servative systems. The key of the method is to search for
finite time convergence zones in different time lengths, i
all the stable segments of the chaotic orbits in different ti
lengths. Generally, the finite time convergence zones
crease as the periods increase. The constant periodic p
method is robust against external noise.

Compared with other periodic pulse methods, our con
method is aimed at desired dynamical targets with a g
diversity. Using the method, we can target not only preex
ing periodic orbits in the given system, but also new orb
not naturally visited in the unperturbed dynamics. It is mo
important that the Jacobian determinant is invariant un
the action of the perturbation on the system variables,
that this does not change the conservative property of
system. Therefore, the method is suitable for both dissipa
and conservative systems. The behavior of the contro
system is dependent not only on the control parameters~in-
terval and intensity of pulse!, but also on the position of the
initial point. Further studies are currently in progress.
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@13# M. Hénon, Commun. Math. Phys.50, 69 ~1976!.
@14# B. V. Chirikov, Phys. Rep.52, 263 ~1979!.
@15# L. J. Reichl,The Transition to Chaos~Springer-Verlag, New

York, 1992!, p. 28.
@16# B. Shraiman, C. E. Wayne, and P. C. Martin, Phys. Rev. L

46, 935 ~1981!.
1-10


